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Category theory takes a bird’s eye view of mathematics. From high in the sky,
details become invisible, but we can spot patterns that were impossible to detect from
ground level.

— Tom Leinster, Basic Category Theory [5]

Preface

This document serves as the lecture notes of a four day course introducing category
theory. Its contents have been drawn mainly from the book by Tom Leinster [5]
and the book by Chris Heunen and Jamie Vicary [3]. Depending on the reader’s
background, other books of interest may be Emily Riehl’s [6] for the more mathe-
matically inclined and the Dodo book by Bob Coecke and Aleks Kissinger [1] for
people particularly interested in graphical calculi for quantum computing.

The course has been designed with the goal of building up the necessary knowl-
edge to discuss two important results regarding categories of quantum processes:

� the universal property of the category of CPTP maps [4] and

� a categorical proof of the Choi-Jamio lkowski isomorphism [7] regarding com-
pletely positive maps (rather than CPTP).

Nevertheless, most of the content of the course does not require prior knowledge in
quantum computing and may serve as a brief introduction to anyone wanting to dip
their toes into category theory.

The exercises in this document are classified according to tags.

� [!] General interest. Required to follow the course.

� [M] Bonus standard exercise from category theory books.

� [Q] Bonus exercise on categories in quantum physics/computing.

� [C] Bonus exercise on categories in computer science.

1 Basic definitions

In this first session we will study the three most basic definitions in category theory:
category, functor and natural transformation. Examples are provided for each of
this concepts. However, before we delve into category theory, let’s introduce a
generalised notion of group that will be used in many of the examples and exercises.
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Definition 1.1. Let A be a set, let ∗ : A × A → A be a function and let u ∈ A.
The triple (A, ∗, u) is a monoid if the following is satisfied:

� x ∗ u = x = u ∗ x for all x ∈ A and

� (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ A.

A group is a monoid (A, ∗, u) that has an inverse element for each x ∈ A — i.e.
there is some y ∈ A such that x∗ y = u = y ∗x. A commutative monoid is a monoid
(A, ∗, u) satisfying x ∗ y = y ∗ x for all x, y ∈ A. An abelian group is a group that is
also a commutative monoid.

Every mathematical structure has an appropriate notion of structure-preserving
map. In this case we have monoid homomorphisms, defined below.

Definition 1.2. Let (A, ∗A, uA) and (B, ∗B, uB) be two monoids. A monoid homo-
morphism is a function f : A→ B such that:

� f(uA) = uB and

� f(x ∗A y) = f(x) ∗B f(y) for all x, y ∈ A.

A group homomorphism is simply a monoid homomorphism between groups.

1.1 Categories

Definition 1.3. A category C is comprised of a collection of objects Ob(C) and,
for each pair of objects A,B ∈ Ob(C), a collection of morphisms C(A,B), together
with a composition operation

◦ : C(B,C)×C(A,B)→ C(A,C)

for all A,B,C ∈ Ob(C) satisfying the following axioms.

� Identities : For every object A, there is a special morphism idA ∈ C(A,A) so
that

f ◦ idA = f = idB ◦ f (1)

for all A,B ∈ Ob(C) and for all f ∈ C(A,B),

� Associativity : For all A,B,C,D ∈ Ob(C) and all f ∈ C(A,B), g ∈ C(B,C)
and h ∈ C(C,D),

(h ◦ g) ◦ f = h ◦ (g ◦ f). (2)

For any morphism f ∈ C(A,B) we refer to f : A→ B as its type. To reduce clutter,
A ∈ C is often used to indicate that A is an object in Ob(C).

A keen reader may observe that the axioms imposed in the definition of monoid
and in the definition of category are essentially the same: associativity and existence
of unit/identity element. The only difference is that any pair of elements in a
monoid can be multiplied together, but not every pair of morphisms can be composed
together — given f : A→ B and g : C → D we need that B = C for g ◦ f to be well
defined. This intuition is captured by the following proposition.

Proposition 1.4. Let {•} be an arbitrary singleton set. There is a one-to-one
correspondence between monoids (A, ∗, u) and categories C where Ob(C) = {•}.
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Proof. For each monoid (A, ∗, u) there is a unique category C where Ob(C) = {•}
and C(•, •) = A with id• = u and ◦ = ∗. Associativity and identities in C follow
from the corresponding axioms of monoids. For each category C where Ob(C) = {•}
it is immediate that (C(•, •), ◦, id•) is a monoid.

More examples of mathematical concepts that can be realised in terms of cate-
gories will be studied in the exercises of this section: in particular, partially ordered
sets (Exercise 1.2) and graphs (Exercise 1.5). However, in applied category theory,
the most common kind of category is one whose objects are the collection of all
mathematical structures of certain kind and whose morphisms are their structure-
preserving functions. Some examples of these are provided below.

Example 1.5. The category Set has sets as objects and functions as morphisms.
More precisely, for any two sets A,B ∈ Set, the collection Set(A,B) is the set of all
functions from A to B. Composition of functions (g ◦ f)(a) = g(f(a)) is associative
and its identities idA : A→ A are the usual identity functions.

Example 1.6. The category Rel has sets as objects and relations as morphisms.
More precisely, for any two sets A,B ∈ Rel, the collection Rel(A,B) is the set of
all relations between set A and set B, i.e. Rel(A,B) is the powerset of A×B. The
composite of R : A→ B and S : B → C is given as follows:

S ◦ R = {(a, c) ∈ A× C | ∃b ∈ B, aRb and bSc}.

Composition is associative and identities are relations idA = {(a, a) | a ∈ A}.

Example 1.7. The category Mon has monoids as objects and each Mon(A,B) is
the set of all monoid homomorphisms from A to B. Composition and identities are
the same as in Set. Similarly, there is a category CMon of commutative monoids,
a category Grp of groups and a category Ab of abelian groups, all of which have
monoid homomorphisms as their morphisms.

Example 1.8. The category Hilb has Hilbert spaces as objects and each Hilb(A,B)
is the set of all bounded linear maps from A to B. Composition and identities are the
same as in Set. Similarly, there is a category FdHilb whose objects are restricted
to finite dimensional Hilbert spaces.

1.2 Functors

Categories are themselves mathematical structures. A natural question arises: is
there a notion of structure-preserving maps between categories? Indeed, they are
known as functors.

Definition 1.9. Let C and D be two categories. A functor F : C→ D is comprised
of a mapping between objects so that if A ∈ C then F (A) ∈ D, and a mapping
between morphisms so that if f ∈ C(A,B) then F (f) ∈ D(F (A), F (B)). For it to
be a functor, F must preserve composition and identities:

F (g ◦ f) = F (g) ◦ F (f)

F (idA) = idF (A).
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Example 1.10. There is a functor Set→ Rel that sends each set to itself and each
function f : A→ B to its graph, i.e. to the relation:

Rf = {(a, b) ∈ A×B | f(a) = b}.

The graph of the identity function matches the identity relation; it is easy to check
that composition is preserved.

Example 1.11. There is a functor Mon → Set that sends each monoid to its
underlying set, and each monoid homomorphism to its underlying function. Since
composition in Mon is defined in the same manner as in Set, proving that this is a
functor is trivial.

Example 1.12. There is a functor Ab → CMon that acts as the identity on
objects — since every abelian group is a commutative monoid — and acts as the
identity on morphisms. The morphisms and composition in Ab are the same as
those in CMon, so it is trivial to show that this is indeed a functor.

We say that C is a subcategory of D if Ob(C) is a subcollection of Ob(D) and
C(A,B) is a subcollection of D(A,B) for each A,B ∈ C. If C is a subcategory of D
there is a canonical functor we denote C ↪→ D.1 For instance, Ab is a subcategory
of CMon and the functor Ab ↪→ CMon was described in the previous example.
The following functors exist and describe how certain categories of monoids are
subcategories of others:

CMon

Ab Mon.

Grp

The examples of functors presented so far have been quite straightforward in
that they simply “forget” some information of the objects or morphisms in their
source category, e.g. Mon → Set “forgets” the monoid operation and unit and
retrieves the underlying set. In contrast, the following examples provide functors
that describe how any set can be upgraded to a monoid so that functions between
sets become monoid homomorphisms.

Example 1.13. There is a functor F : Set → Mon that maps each set A to the
monoid F (A) = (List(A),+, [ ]) where List(A) is the collection of finite lists of
elements in A, + is list concatenation and [ ] is the empty list. Each function
f : A→ B is lifted to a monoid homomorphism F (f) : F (A)→ F (B) that maps

[x, y, . . .] 7→ [f(x), f(y), . . .].

It is trivial to check that F (g ◦f) = F (g)◦F (f) for every two composable functions
f and g and F (idA) = idF (A) for every A ∈ Set, so F is indeed a functor.

1Many authors use ↪→ to refer to functors that act injectively both on the collection of ob-
jects and the collection of all morphisms. In this notes we will restrict their use to the case of
subcategories.
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Example 1.14. There is a functor G : Set → CMon that maps each set A to a
commutative monoid G(A) = (Set(A),∪,∅) where Set(A) is the collection of finite
sets of elements in A, ∪ corresponds to union of sets and ∅ is the empty set. Each
function f : A→ B is lifted to a monoid homomorphism G(F ) : G(A)→ G(B) that
maps

{x, y, . . .} 7→ {f(x), f(y), . . .}.
It is trivial to check that G(g ◦f) = G(g)◦G(f) for every two composable functions
f and g and G(idA) = idG(A) for every A ∈ Set, so G is indeed a functor.

It is apparent that these two functors F : Set → Mon and G : Set → CMon
are quite similar. The next subsection will provide the tools to “compare” functors
and formalise their correspondence.

In the exercise sheet we will see some more examples of functors: the conversion
of unitary matrices into completely positive maps is a functor (Exercise 1.3), every
graph can be realised as a functor 2→ Set (Exercise 1.5) and certain programming
abstractions such as the Maybe monad are functors (Exercise 1.6).

1.3 Natural transformations

So far we have defined categories and maps between categories (functors). Is there
a reasonable notion of map between functors? These are known as natural transfor-
mations and they are an integral part of category theory.

Definition 1.15. Let C and D be categories, let F : C → D and G : C → D be
functors. A natural transformation F

α
=⇒ G is a collection of morphisms αA : F (A)→

G(A) in D for each A ∈ C such that

αB ◦ F (f) = HG(f) ◦ αA (3)

for every f ∈ C(A,B). We say α is a natural isomorphism if, additionally, all
morphism αA are invertible.2

We will see several examples of natural transformations in the exercises of this
section and throughout the course. For now, here is a quick taste of how they look
like in practice.

Example 1.16. Take the functors F : Set → Mon and G : Set → CMon from
Examples 1.13 and 1.14. Let H : CMon ↪→ Mon be the embedding functor
acting as the identity on objects and morphisms and let HG : Set → Mon be
their composition. There is a natural transformation F

α
=⇒ HG whose component

αA : F (A) → HG(A) for each A ∈ Set is the function converting a list into a set,
removing duplicated elements.

Proof. To show that indeed F
α
=⇒ HG is a natural transformation we first need to

check that each component αA is a morphism in Mon, i.e. a monoid homomor-
phism. It is immediate that αA([ ]) = ∅ and for any two lists l1, l2 ∈ F (A) it is
straightforward to check that αA(l1 + l2) = αA(l1)∪αA(l2) since the elements in the
resulting sets will be the same no matter on which order we apply these operations.
Consequently, αA for each A ∈ Set is indeed a monoid homomorphism. It only
remains to show that

αB ◦ F (f) = HG(f) ◦ αA
2A morphism f : A → B is invertible if there is another morphism g : B → A in the category

such that g ◦ f = idA and f ◦ g = idB .
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for every function f ∈ Set(A,B). To check that this holds recall that both F (f) and
G(f) simply apply f to each element in the list/set, whereas H acts as identity on
morphisms. On one hand, αB ◦F (f) removes duplicates from the list after applying
f to each of its elements; on the other hand, HG(f)◦αA removes duplicates first. In
either case, though, the result is a set so it cannot have duplicates. Therefore, both
sets have the same elements and we conclude that equation (3) holds and F

α
=⇒ HG

is a natural transformation.

Importantly, the previous example does not simply state that there is a well-
defined function that turns every list into a set. The fact that it is a natural trans-
formation means that this conversion turns list concatenation into set union and
that it commutes with any function you apply uniformly on the elements of the
list/set. Consequently, we have expressed quite a lot of information in just the sim-
ple claim that “there is a natural transformation F

α
=⇒ HG”. During this course we

will see that there is an abundance of examples of categories, functors and natural
transformations that are quite distinct from each other at first glance but can be
treated in the same abstract terms using category theory.

1.4 Final remarks

A bit on commutative diagrams. In category theory we often use commutative
diagrams to represent algebraic identities such as the one in the definition of natural
transformation (3)

αB ◦ F (f) = G(f) ◦ αA.

In this particular case, we say that the identity holds if and only if the following
diagram commutes:

F (A) G(A)

F (B) G(B).
αB

αA

F (f) G(f)

A diagram commutes when all directed paths between any two objects compose to
the same morphism. These diagrams are nothing more than 2D representations of
algebraic identities, but they make reading these identities surprisingly simpler —
one of the reasons being that the objects are given explicitly.

Some “meta” categories. Can category theory talk about categories of cate-
gories? and categories of functors? Indeed it can, and it is often useful. In this
course we will not use these all that much, but some of the exercises in this section
will discuss interesting examples of categories of functors.

Definition 1.17. Let Cat be the category whose objects are (small)3 categories and
whose morphisms are functors. Composition of functors corresponds to composing
their mapping on objects on one hand and their mapping on morphisms on the
other. For each category C, the identity functor 1C : C→ C acts as the identity on
objects and morphisms.

3A small category is one such that its collection of objects and morphisms are small, i.e. they
are set. This is to avoid Cat (which is not small) from being an object in itself.

6



Definition 1.18. Let C and D be two categories. Let the functor category [C,D]
be the category whose collection of objects is comprised of all functors C→ D and
whose collection of morphisms [C,D](F,G) is comprised of all natural transforma-

tions F
α
=⇒ G. Composition of morphisms F

α
=⇒ G and G

β
=⇒ H corresponds to the

natural transformation F
β◦α
==⇒ H whose components are βA ◦ αA for each A ∈ C.

For each F ∈ [C,D] the identity morphism idF is the natural transformation whose
components are idF (A) for each A ∈ C.

1.5 Exercises

[!] 1.1. Prove that a functor between one-object categories (Proposition 1.4) is a
monoid homomorphism.

[M] 1.2. A partially ordered set is a pair (A,≤) where A is a set and ≤ is a relation
on A satisfying:

� x ≤ x for all x ∈ A,

� x ≤ y and y ≤ z =⇒ x ≤ z for all x, y, z ∈ A,

� x ≤ y and y ≤ x =⇒ x = y for all x, y ∈ A.

An acyclic category is a category C where Ob(C) is a set and for all objects A,B ∈ C
their set of morphisms C(A,B) is either singleton or empty and if A 6= B then either
C(A,B) = ∅ or C(B,A) = ∅.

(a) Prove that there is a one-to-one correspondence between partially ordered sets
and acyclic categories.

(b) Prove that a functor between acyclic categories is an isotone function.4

[Q] 1.3. Let Isometry be the category whose objects are finite dimensional Hilbert
spaces and whose morphisms are isometries. Let CPTP be the category whose
objects are finite dimensional Hilbert spaces and whose morphisms A → B are
CPTP maps L(A) → L(B) where L(A) is the Hilbert space of linear maps of type
A→ A.

(a) Define a functor Isometry → CPTP that sends unitary maps to CPTP
maps.

(b) Prove that this is indeed a functor, i.e. it preserves composition and identities.

[!] 1.4. Let F : Set →Mon be the functor from Example 1.13. Let G : Mon →
Set be the functor from Example 1.11. Let FG : Mon→Mon be their composite.
Let 1Mon : Mon→Mon be the identity functor.

(a) Let (A, ∗, u) be a monoid. Let

ε(A,∗,u) : (List(A),+, [ ])→ (A, ∗, u)

be a monoid homomorphism that acts on singleton lists as [x] 7→ x for all
x ∈ A. How does it act on arbitrary elements of List(A)?

4Let (A,≤) and (B,4) be partially ordered sets; a function f : A→ B is isotone if x ≤ y =⇒
f(x) 4 f(y) for all x, y ∈ A.
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(b) Prove that the collection of all such morphisms ε(A,∗,u) defines a natural trans-

formation FG
ε

=⇒ 1Mon.

[M] 1.5. Let 2 be the category comprised of only two objects and two morphisms
(other than the identities) of the following type:

• •

where each • is a distinct object and each arrow is a distinct morphism.

(a) Prove that every graph G = (V,E) is a functor 2→ Set.

(b) A graph homomorphism is a function f : VG → VG′ between the set of vertices
of two graphs such that if (u, v) ∈ EG then (f(u), f(v)) ∈ EG′ . Prove that
a natural transformation between two graphs seen as functors 2 → Set is a
graph homomorphism.

(c) Provide a functor from the category Graph of graphs and graph homomor-
phisms to the category [2,Set] (see Definition 1.18).

[C] 1.6. Let F : Set→ Set map each set A to A]{/} and each function f : A→ B
to

F (f)(x) =

{
f(x) if x ∈ A
/ otherwise.

(a) Prove that F is a functor.

(b) Define natural transformations 1Set
η

=⇒ F and FF
µ

=⇒ F whose components on
each A ∈ Set map each element x ∈ A to itself.

(c) Prove that for each A ∈ Set the following diagrams commute in Set:

FFF (A) FF (A) F (A) FF (A)

FF (A) F (A) FF (A) F (A)

µF (A)

F (µA) µA

µA

ηF (A)

µA

µAF (ηA) idF (A)

(d) Given two functions f : A → F (B) and g : B → F (C), define a function
g ∗ f : A → F (C) that maps each x ∈ A to g(f(x)) ∈ F (C). Hint: build it
using η and µ.

(e) Let SetF be a category such that Ob(SetF ) = Ob(Set) and SetF (A,B) =
Set(A,F (B)) for each A,B ∈ Set. What are the identity morphisms if we
use ∗ as composition?

Note: A functor whose source and target category are the same is known as an
endofunctor ; F is an endofunctor. At the beginning of this document we defined
monoids in Set, but the same notion may be defined on objects of any category.
Hence, we say that (F, µ, η) is a monoid in the category of endofunctors: a monad.
Indeed, notice that task (c) proves that µ is associative and η is the unit of µ. The
category SetF is known as the Kleisli category of F ; its composition is closely related
to >>= from Haskell. You may check that F does the same job as the Maybe monad
in Haskell.
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2 Universal properties

In category theory, whenever we want to talk about a particular object in a category
— say, the direct sum H0 ⊕ H1 of two Hilbert spaces — rather than define its
contents explicitly, it is best to characterise it in terms of what makes the object
special in its category. That way, we discover patterns: from a category theory
perspective, the empty set plays the same role in Rel as the 0-dimensional space in
FdHilb, whereas the direct sum of Hilbert spaces plays in FdHilb a similar role
both Cartesian product and disjoint union play in Set. This is captured by the
concept of universal property of which we will see many examples in this section.
Certain universal properties appear so often that category theorists have given them
names; let’s go over some of them.

2.1 Products

Definition 2.1. Let C be a category and let A,B ∈ C be two objects in it. A
product of A and B is (if it exists):

� an object A×B ∈ C along with

� a morphism πA : A×B → A and

� a morphism πB : A×B → B

such that for any other object X ∈ C and morphisms f : X → A and g : X → B
there is a unique morphism m : X → A×B making the following diagram commute.

X

A A×B B

f g

πA πB

m

Universal properties always involve the existence of a unique morphism; in this
case, for each pair f : X → A and g : X → B there is a unique morphism m : X →
A× B making the diagram commute. The existence of such a morphism m means
that, in some loose sense, m subsumes both f and g since we can recover both from
it via f = πA◦m and g = πB◦m. Moreover, since m is required to be unique for each
choice of f and g, there is a one-to-one correspondence between pairs of morphisms
(f, g) ∈ C(X,A)×C(X,B) and morphisms m ∈ C(X,A×B) (see Proposition 2.8),
i.e. for every object X ∈ C there is a bijection:

C(X,A)×C(X,B) ∼= C(X,A×B).

This is what makes A × B a special object in C. The examples below show that
categorical products are common in mathematics.

Example 2.2. Let A,B ∈ Set. The Cartesian product of sets A and B

A×B = {(a, b) | a ∈ A, b ∈ B}

along with projections πA mapping (a, b) 7→ a and πB mapping (a, b) 7→ b comprise
a product of A and B in Set. For each pair of functions f : X → A and g : X → B
the corresponding unique morphism m : X → A×B is the function

m(x) = (f(x), g(x)).
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Example 2.3. Let A,B ∈ Rel. The disjoint union of sets A and B

A ]B = {aleft | a ∈ A} ∪ {bright | b ∈ B}

along with relations πA = {(aleft, a) | a ∈ A} and πB = {(bright, b) | b ∈ B} comprise
a product of A and B in Rel. For each pair of relations R : X → A and S : X → B
the corresponding unique morphism m : X → A ]B is the relation

m = {(x, aleft) | x ∈ X, a ∈ A s.t. xRa} ∪ {(x, bright) | x ∈ X, b ∈ B s.t. xSb}.

Example 2.4. Let A,B ∈ FdHilb. The direct sum of A and B is the vector
space A⊕B on the Cartesian product of their underlying sets, with coordinate-wise
addition and scalar multiplication. Then, A⊕B is made into a Hilbert space by the
inner product

〈(a, b)|(a′, b′)〉 = 〈a |a′〉+ 〈b |b′〉.
The direct sum A⊕B along with linear maps πA mapping (a, b) 7→ a and πB mapping
(a, b) 7→ b comprise a product of A and B in FdHilb. For each pair of linear maps
f : X → A and g : X → B the corresponding unique morphism m : X → A ⊕ B is
the linear map

m(x) = (f(x), g(x)).

Example 2.5. Let (A,≤) be a partially ordered set and view it as a category C (as
in Exercise 1.2). Let a, b ∈ A and recall that these are objects a, b ∈ Ob(C). The
category C has a product a × b if and only if there is a greatest lower bound for a
and b in (A,≤).5

You should convince yourself — by inspecting the commutative diagram from
Definition 2.1 — that, indeed, these examples satisfy the definition of product in
their respective categories. A non-example is presented below.

Example 2.6. Let A,B ∈ Set. There are no morphisms πA : A ] B → A and
πB : A ] B → B that make A ] B a product in Set. Intuitively, the projections
would need to map πA(aleft) = a and πB(bright) = b; however, it is unclear what the
value of πA(bright) ∈ A should be. For instance, take A = {a, a′} and B = {b}; then,
we need to choose whether πA(bright) = a or πA(bright) = a′. Let’s say we choose
πA(bright) = a, but this means that πA provides “two ways to reach a” — either
through aleft or through bright — implying that the definition of m : X → A]B will
not be unique, thus failing the universal property. A formal proof for all A,B ∈ Set
is sketched after Proposition 2.7.

Perhaps it is not yet convincing that the universal property unambiguously char-
acterises these objects: sure, the direct sum of Hilbert spaces is a categorical product,
but if I refer to “the categorical product in FdHilb”, am I unequivocally referring
to the direct sum? The following two propositions are meant to clarify this point.

Proposition 2.7. Let A,B ∈ C where both (A×B, πA, πB) and (A�B, pA, pB) are
products in C. Then, there is an isomorphism A×B ∼= A�B.

Proof. Since A×B is a product, there is a unique morphism m making the following
diagram

A�B

A A×B B

pA pB

πA πB

m

5Assuming that C is defined so that a ≤ b implies C(a, b) 6= ∅.
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commute. Similarly, since A�B is a product, there is a unique morphism m′ making
the following diagram

A×B

A A�B B

πA πB

pA pB

m′

commute. Finally, since A×B is a product there is a unique morphism making the
following diagram

A×B

A A×B B

πA πB

πA πB

commute. One such morphism is idA×B and it is not difficult to check that another
morphism making the diagram commute is m′ ◦m; however, according to the defi-
nition of product, there is only one such morphism (uniqueness), so it must be that
m′ ◦ m = idA×B. A similar argument can be used to show that m ◦ m′ = idA�B,
hence, m : A×B → A�B is an isomorphism whose inverse is m′.

For instance, you may be familiar with a different definition of the direct sum of
two Hilbert spaces A,B ∈ FdHilb in terms of a basis given by the disjoint union
of a basis for A and a basis for B. Such a definition gives rise to a different Hilbert
space, but it is isomorphic to our definition of A⊕B under appropriate relabelling
of the basis vectors. The takeaway is that what matters is the universal property of
A⊕B — i.e. that it is a product in FdHilb — rather than its explicit construction
(of which there may be multiple isomorphic versions).

On the other hand, in a previous example we have shown that for each A,B ∈
Set, their Cartesian product A×B is a product in Set. Since A×B is not isomorphic
to A ] B — their cardinalities are different — then A ] B cannot be a product in
Set, as claimed in Example 2.6.

Proposition 2.8. Let C be a category with objects A,B ∈ C. Let (A× B, πA, πB)
be a product in C. For each X ∈ C, there is a bijection

C(X,A)×C(X,B) ∼= C(X,A×B).

Proof. Let (f, g) ∈ C(X,A)×C(X,B); from the definition of product we know that
there is a unique morphism m ∈ C(X,A×B) such that f = πA ◦m and g = πB ◦m.
Let φ : C(X,A)×C(X,B)→ C(X,A×B) map each (f, g) to its corresponding m;
we need to show that φ is injective and surjective.

� Notice that for every m ∈ C(X,A×B) the pair (πA ◦m,πB ◦m) ∈ C(X,A)×
C(X,B) trivially makes the diagram

X

A A×B B

πA◦m πB◦m

πA πB

m

commute. Consequently, each m ∈ C(X,A × B) is in the image of φ since
φ(πA ◦m,πB ◦m) = m, implying φ is surjective.

� Let (f, g) ∈ C(X,A) × C(X,B) and (f ′, g′) ∈ C(X,A) × C(X,B) satisfy
φ(f, g) = m = φ(f ′, g′). Then, πA ◦ m = f and πA ◦ m = f ′ implying that
f = f ′ and, similarly, g = g′. Consequently, φ is injective.

11



2.2 Coproducts

A common strategy in category theory to get new definitions from previous ones is
to dualise them. In a hand-wavy way, we say that the dual of a concept is obtained
by reversing the direction of all arrows involved in its definition. The dual of a
product is a coproduct, explicitly defined below.

Definition 2.9. Let C be a category and let A,B ∈ C be two objects in it. The
coproduct of A and B is (if it exists):

� an object A+B ∈ C along with

� a morphism ιA : A→ A+B and

� a morphism ιB : B → A+B

such that for any other object X ∈ C and morphisms f : A → X and g : B → X
there is a unique morphism m : A+B → X making the following diagram commute.

X

A A+B B

f g

ιA ιB

m

You may check that Propositions 2.7 and 2.8 hold in the case of coproducts.
Namely, given a category C and objects A,B ∈ C, any two coproducts of A and B
are isomorphic and for any X ∈ C there is a bijection

C(A,X)×C(B,X) ∼= C(A+B,X).

Some examples of coproducts are given below.

Example 2.10. Let A,B ∈ Set. The disjoint union of sets A and B

A ]B = {aleft | a ∈ A} ∪ {bright | b ∈ B}

along with injections ιA mapping a 7→ aleft and ιB mapping b 7→ bright comprise a
coproduct of A and B in Set. For each pair of functions f : A→ X and g : B → X
the corresponding unique morphism m : A ]B → X is the function

m(c) =

{
f(a) if c = aleft

g(b) if c = bright.

Example 2.11. Let A,B ∈ Rel. The disjoint union of sets A and B

A ]B = {aleft | a ∈ A} ∪ {bright | b ∈ B}

along with relations ιA = {(a, aleft) | a ∈ A} and ιB = {(b, bright) | b ∈ B} comprise a
coproduct of A and B in Rel. For each pair of relations R : A→ X and S : B → X
the corresponding unique morphism m : A ]B → X is the relation

m = {(aleft, x) | x ∈ X, a ∈ A s.t. aRx} ∪ {(bright, x) | x ∈ X, b ∈ B s.t. bSx}.

Example 2.12. Let A,B ∈ FdHilb. The direct sum A ⊕ B along with linear
maps ιA mapping a 7→ (a, 0) and ιB mapping b 7→ (0, b) comprise a coproduct of
A and B in FdHilb. For each pair of linear maps f : A → X and g : B → X the
corresponding unique morphism m : A⊕B → X is the linear map

m(a, b) = f(a) + g(b).

12



Example 2.13. Let (A,≤) be a partially ordered set and view it as a category C
(as in Exercise 1.2). Let a, b ∈ A and recall that these are objects a, b ∈ Ob(C).
The category C has a coproduct a + b if and only if there is a lowest upper bound
for a and b in (A,≤).6

2.3 Terminal and initial objects

Definition 2.14. Let C be a category. A terminal object is an object A ∈ C such
that for each object X ∈ C there is a unique morphism of type X → A. Dually, an
initial object is an object A ∈ C such that for each object X ∈ C there is a unique
morphism of type A→ X.

Example 2.15. Let {•} be an arbitrary singleton set; {•} is a terminal object in
Set and for each set X ∈ Set there is a unique function X → {•} mapping each
element x ∈ X to •. The empty set ∅ is an initial object in Set and for each set
X ∈ Set there is a unique function ∅→ X, i.e. the trivial function.

Notice that all singleton sets are isomorphic, as expected from objects charac-
terised by the same universal property. Notice that ∅ cannot be a terminal object
in Set since there is no (total) function X → ∅.

Example 2.16. The empty set ∅ is both an initial and a terminal object in Rel.
For each set X ∈ Rel there is a unique relation X → ∅ and a unique relation
∅→ X, i.e. the empty relation.

Notice that {•} is not a terminal object in Rel since for each set X there are
2|X| relations X → {•}.

Example 2.17. The 0-dimensional Hilbert space {0} is both an initial and a termi-
nal object in FdHilb. For each Hilbert space X ∈ FdHilb there is a unique linear
map X → {0} mapping all vectors to 0 and a unique linear map {0} → X mapping
0 to the zero vector in X.

2.4 Equalizers and coequalizers

Following [5], we first introduce a piece of preliminary terminology. Let C be a
category and let f, g : A→ B be two morphisms in C. A fork of f, g consists of an
object X ∈ C along with a morphism h : X → A such that the diagram

X A Bh

g

f

commutes, i.e. such that f ◦ h = g ◦ h.

Definition 2.18. Let C be a category and let f, g : A→ B be two morphisms in C.
An equalizer of f, g is a fork of f, g — given by E and e : E → A — such that for
any other fork of f, g — given by X and h : X → A — there is a unique morphism
m : X → E making the following diagram

E A B

X

e

g

f

hm

commute.
6Assuming that C is defined so that a ≤ b implies C(a, b) 6= ∅.
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Example 2.19. Let f, g : A → B be two functions. The equalizer of f, g in Set is
the set

E = {a ∈ A | f(a) = g(a)}

along with the embedding function E ↪→ A.

Example 2.20. Let f, g ∈ FdHilb(A,B). The equalizer of f, g in FdHilb is the
kernel

ker(f−g) = {v ∈ A | (f−g)(a) = 0}

which is a closed subspace of A and, hence, a Hilbert space; the morphism of the
equalizer is the embedding ker(f−g) ↪→ A.

Dually, we can define a cofork of f, g : A→ B to be an object X ∈ C along with
a morphism h : B → X such that the diagram

A B X
g

f
h

commutes, i.e. such that h ◦ f = h ◦ g.

Definition 2.21. Let C be a category and let f, g : A → B be two morphisms in
C. A coequalizer of f, g is a cofork of f, g — given by K and k : B → K — such
that for any other cofork of f, g — given by X and h : B → X — there is a unique
morphism m : K → X making the following diagram

A B K

X

g

f
k

h
m

commute.

Example 2.22. Let f, g : A → B be two functions. The coequalizer of f, g in Set
is the quotient set B/∼ where ∼ is the equivalence closure of the relation

R = {(f(a), g(a)) | a ∈ A}.

The morphism of the coequalizer k : B → K is the quotient map, sending each b ∈ B
to its equivalence class [b] ∈ B/∼. For more details, see Example 5.2.9 from [5].

For the next example we need some preliminaries. Recall that for every Hilbert
space H and any set of vectors S ⊆ H, the orthogonal complement of S is

S⊥ = {v ∈ H | ∀u ∈ S, 〈u|v〉 = 0}.

Since S⊥ is a closed subspace of H, it follows that S⊥ is a Hilbert space.

Example 2.23. Let f, g ∈ FdHilb(A,B). The coequalizer of f, g in FdHilb is
im(f−g)⊥ where

im(f−g) = {b ∈ B | ∃a ∈ A, (f−g)(a) = b}.

The morphism of the coequalizer k : B → im(f−g)⊥ maps each vector in im(f−g)
to 0 and each vector in im(f−g)⊥ to itself — the action of k on other vectors is
obtained by linear extension.

14



2.5 The general case: limits and colimits

Products, terminal objects and equalizers all have a similar definition. If we extract
their common pattern we reach the notion of a categorical limit, defined below.

Definition 2.24. Let C be a category. For an arbitrary diagram7 in C, let {Ai ∈
C}i∈I be the set of objects in it. A cone is an object X ∈ C along a set of morphisms
{hi : X → Ai}i∈I such that, when these are included in the diagram, it is satisfied
for each i ∈ I that every path from X to Ai yields the same morphism. A limit is
a cone {si : L → Ai}i∈I such that for any other cone {hi : X → Ai}i∈I there is a
unique morphism m : X → L satisfying hi = si ◦m for each i ∈ I.

An equalizer of f, g : A→ B is a limit of the diagram

A B
g

f

where a fork is just a particular kind of cone.8 A product of two objects A and B
is a limit of the diagram

A B

and a terminal object is a limit of the empty diagram.
We can define colimits dually; for the sake of completeness, the explicit definition

is provided below.

Definition 2.25. Let C be a category. For an arbitrary diagram in C, let {Ai ∈
C}i∈I be the set of objects in it. A cocone is an object X ∈ C along a set of
morphisms {hi : Ai → X}i∈I such that, when these are included in the diagram, it is
satisfied for each i ∈ I that every path from Ai to X yields the same morphism. A
colimit is a cocone {si : Ai → K}i∈I such that for any other cocone {hi : Ai → X}i∈I
there is a unique morphism m : K → X satisfying hi = m ◦ si for each i ∈ I.

As you may expect by now, an initial object is a colimit of the empty diagram, a
coproduct is a colimit of a diagram with two objects and no morphisms and so on.

Proposition 2.26. Let L,L′ ∈ C where both L and L′ are limits of the same
diagram in C. Then, there is an isomorphism L ∼= L′.

Proof. The proof follows the same argument as that of Proposition 2.7. For more
details, see Proposition 3.1.7 from [6].

With the definitions of limit and colimit in hand, we can easily introduce the
notion of pullbacks and pushouts, the last special case of limit that will be considered
in this section.

Definition 2.27. Let C be a category and consider the following diagram in it:

B

A C
f

g

A pullback is a limit of this diagram.
7A diagram is a directed graph where the vertices are objects in C and the arrows are morphisms

in the direction determined by their type
8Notice that a cone is comprised of one morphism per object in the diagram — in this case,

two: hA : X → A and hB : X → B — whereas our definition of fork only considered a morphism
X → A. However, hB = f ◦ hA = g ◦ hA is imposed by the definition of cone so, in this particular
case, it is unnecessary to explicitly provide the value of hB , which is why it was omitted when
introducing forks.
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Example 2.28. Let A,B,B′ ∈ Set, let f : A → B be a function and let B′ ⊆ B.
The inverse image f−1(B′) = {a ∈ A | f(a) ∈ B′} is a pullback of the diagram

B′

A B
f

in Set.

Example 2.29. Let CMon ↪→Mon and Grp ↪→Mon be the canonical embedding
functors introduced in the previous section. The category Ab is a pullback of the
diagram

Grp

CMon Mon

in Cat.

Definition 2.30. Let C be a category and consider the following diagram in it:

C B

A

f

g

A pushout is a colimit of this diagram.

Example 2.31. In the category Graph of graphs and graph homomorphisms, con-
sider the following diagram

where morphisms map colored vertices to colored vertices. The following graph

is a pushout of this diagram.
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2.6 Final remarks

The universal property of the tensor product. Let A,B,C ∈ FdHilb and
let A × B ∈ Set be the Cartesian product of the underlying sets. A function
f ∈ Set(A×B,C) is bilinear if for all a, a′ ∈ A and b, b′ ∈ B:

f(a+ a′, b) = f(a, b) + f(a′, b)

f(a, b+ b′) = f(a, b) + f(a, b′).

Let BilinA×B(C) be the set of bilinear functions of type A × B → C. The tensor
product A ⊗ B ∈ FdHilb is a Hilbert space along with a bilinear function p ∈
BilinA×B(A ⊗ B) characterised by the following universal property: for each C ∈
FdHilb and each f ∈ BilinA×B(C) there is a unique morphism f̄ ∈ FdHilb(A ⊗
B,C) such that the following diagram

A×B C

A⊗B

p

f

f̄

commutes in Set. Put another way, for each C ∈ FdHilb there is a bijection

BilinA×B(C) ∼= FdHilb(A⊗B,C)

which allows us to unequivocally represent bilinear functions A × B → C as linear
maps A⊗B → C.

The universal property of CPTP [4]. Let Isometry be the category whose
objects are finite dimensional Hilbert spaces and whose morphisms are isometries.
Let CPTP be the category whose objects are finite dimensional Hilbert spaces and
whose morphisms A → B are completely positive trace-preserving maps L(A) →
L(B).9 Let E : Isometry → CPTP be the functor acting as identity on objects
and mapping each isometry V to its (pure) CPTP map V (−)V †. The following
universal property has to do with monoidal categories, which are introduced in the
next section. Let (D,⊗, I) be a symmetric monoidal category whose monoidal unit
I is a terminal object and let F : Isometry→ D be a symmetric monoidal functor.
There is a unique symmetric monoidal functor F̂ making the following diagram

Isometry CPTP

D

E

F
F̂

commute in Cat. Loosely speaking, this characterises CPTP as the canonical
completion obtained after adding a discarding map to Isometry. More details on
this will be discussed later in the course.

2.7 Exercises

[!] 2.1. Let C be a category and let the following be a diagram in it

B

A C.
f

g

9Where L(A) is the Hilbert space of linear maps of type A→ A.
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Assume the product of A and B exists, and so does the equalizer of

A×B C
g◦πB

f◦πA

Prove that an equalizer of this diagram is a pullback of the first diagram.

[M] 2.2. Prove the claim of the following examples.

(a) Example 2.20.

(b) Example 2.23.

(c) Example 2.28.

[!] 2.3. Let C be a category and let A,B,C ∈ C be objects in it.

(a) Assume the product of A and B exists and that the product of A×B and C
exists as well. Prove that (A×B)× C is a limit of the diagram

A B C

(b) Assume the product of B and C exists and that the product of A and B × C
exists as well. Prove that A× (B × C) is a limit of the diagram

A B C

(c) Conclude, using Proposition 2.26, that there is an isomorphism

(A×B)× C ∼= A× (B × C).

[M] 2.4. (Exercise 5.1.35 from [5]) Take a commutative diagram

• • •

• • •

in some category. Suppose that the right-hand square is a pullback. Show that the
left-hand square is a pullback if and only if the outer rectangle is a pullback.
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3 Monoidal categories

We will often find that ‘sequential’ composition of morphisms ◦ is not the only
reasonable notion of composition. The notion of ‘parallel’ composition is formalised
in monoidal categories.

We need some preliminaries before defining monoidal categories. Let C and D
be categories; we can define a new category C ×D whose objects are pairs (A,B)
for each A ∈ C and B ∈ D and whose morphisms (A,B)→ (C,D) are pairs (f, g)
for each f ∈ C(A,C) and g ∈ D(B,D).10

Let F : A×B→ C be a functor; then functoriality imposes

F (g, k) ◦C F (f, h) = F (g ◦A f, k ◦B h)

where f and g are morphisms in A and k and h are morphisms in B. We tend to
write these kind of ‘binary functors’ using operator notation. For instance, we may
rename the functor F above as ⊗ and write F (g, k) as (g ⊗ k) instead. Then, the
previous equation becomes

(g ⊗ k) ◦C (f ⊗ h) = (g ◦A f)⊗ (k ◦B h). (4)

Definition 3.1. Let C be a category, let ⊗ : C×C→ C be a functor and let I be
an object in C. The triple (C,⊗, I) is a monoidal category if there is:

� a natural isomorphism α known as the associator whose components are mor-
phisms in C of type

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C)

for each A,B,C ∈ C;

� a natural isomorphism λ known as the left unitor whose components are mor-
phisms in C of type

λA : I ⊗ A→ A

for each A ∈ C;

� a natural isomorphism ρ known as the right unitor whose components are
morphisms in C of type

ρA : A⊗ I → A

for each A ∈ C;

such that the diagrams below commute for all choices of objects A,B,C,D ∈ C.
We refer to ⊗ as the monoidal product and I as the monoidal unit.

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,C

ρA⊗idB idA⊗λB

10This happens to be a product in the category Cat!
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(A⊗B)⊗ (C ⊗D)

((A⊗B)⊗ C)⊗D A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)αA,B⊗C,D

αA⊗B,C,D

αA,B,C⊗idD

αA,B,C⊗D

idA⊗αB,C,D

The first of the commuting diagrams above (the triangle) imposes that the object
I acts as the unit of ‘parallel’ composition⊗, whereas the second commuting diagram
(the pentagon) imposes that ⊗ is associative. As discussed above, the requirement
that ⊗ : C×C→ C is a functor imposes an interchange law between ◦ and ⊗:

(g ⊗ k) ◦ (f ⊗ h) = (g ◦ f)⊗ (k ◦ h). (5)

The intuition behind this equation is provided in the picture below — it does not
matter whether we first compose in parallel or sequentially, the result is the same.

=

h

f

k

g

h

f

k

g

By convention, morphisms are depicted as labelled boxes, connected via wires
when composed sequentially (using ◦) and drawn one on top of the other when
composed in parallel. Some examples of monoidal categories are presented below.

Example 3.2. Let × : Set × Set → Set be the functor acting on objects as the
Cartesian product of sets. On morphisms f : A → C and g : B → D, the functor
yields a function f × g that maps each (a, b) ∈ A× B to (f(a), g(b)) ∈ C ×D. Let
{•} be an arbitrary singleton set; then, (Set,×, {•}) is a monoidal category. Its
associators and unitors are the unique morphisms of their type.

Example 3.3. Let ⊕ : Rel × Rel → Rel be the functor acting on objects as the
disjoint union of sets A ⊕ B = A ] B. On morphisms R : A → C and S : B → D,
the functor yields the following relation:

R⊕S = {(aleft, cleft) | aRc} ∪ {(bright, dright) | bSd}.

It can be shown that (Rel,⊕,∅) is a monoidal category. Its associators and unitors
are the unique morphisms of their type.

Example 3.4. Let ⊕ : FdHilb× FdHilb→ FdHilb be the functor acting as the
direct sum of Hilbert spaces and linear maps and let {0} be the zero-dimensional
vector space. It can be shown that (FdHilb,⊕, {0}) is a monoidal category. Its
associators and unitors are the unique morphisms of their type.
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All of these examples have something in common: the monoidal product on
objects is a categorical product and the monoidal unit is a terminal object. Indeed,
every category with products and terminal objects can be given a monoidal structure;
we will look into this in Exercise 3.1. The proof of each of the examples above can
be derived immediately from the claim in that exercise. In contrast, the monoidal
product of the following examples does not come from a categorical product.

Example 3.5. Let ⊗ : Rel×Rel→ Rel be the functor acting on objects as Carte-
sian product of sets A ⊗ B = A × B. On morphisms R : A → C and S : B → D,
the functor yields the following relation:

(a, b)R⊗S(c, d) ⇐⇒ aRc and bSd.

It can be shown that (Rel,⊗, {•}) is a monoidal category where:

� the associator αA,B,C is the relation ((a, b), c) ∼ (a, (b, c)) for each a ∈ A, b ∈ B
and c ∈ C,

� the left unitor λA is the relation (•, a) ∼ a for each a ∈ A and

� the right unitor ρA is the relation (a, •) ∼ a for each a ∈ A.

Example 3.6. Let ⊗ : FdHilb× FdHilb→ FdHilb be the functor acting as the
tensor product on vector spaces and linear maps. It can be shown that (FdHilb,⊗,C)
is a monoidal category where:

� the associator αA,B,C is the unique linear map such that (a⊗b)⊗c 7→ a⊗(b⊗c)
for each a ∈ A, b ∈ B and c ∈ C,

� the left unitor λA is the unique linear map such that 1⊗ a 7→ a for each a ∈ A
and

� the right unitor ρA is the unique linear map a⊗ 1 7→ a for each a ∈ A.

Example 3.7. Let ⊕ : Set×Set→ Set be the functor acting on objects as disjoint
union A⊕ B = A ] B. On morphisms f : A→ C and g : B → D, the funtor yields
the following function:

f⊕g(x) =

{
f(a) if x = aleft

g(b) if x = bright.

It can be shown that (Set,⊕,∅) is a monoidal category where:

� the associator αA,B,C is the function mapping (aleft)left 7→ aleft for each a ∈ A,
mapping (bright)left 7→ (bleft)right for each b ∈ B and mapping cright 7→ (cright)right

for each c ∈ C,

� the left unitor λA is the function mapping aright 7→ a for each a ∈ A and

� the right unitor ρA is the function mapping aleft 7→ a for each a ∈ A.

You should convince yourself that (5) holds for the monoidal product in each of
this examples, and check that the pentagon and triangle diagrams from Definition 3.1
do commute. You should also check that α, λ and ρ are natural isomorphisms. Since
associators and unitors are given explicitly in these last three examples, all these
checks can be done by direct calculation. Notice that, in the case of (Set,⊕,∅), we
have defined the monoidal structure using a coproduct and an initial object in Set.

21



3.1 Monoidal functors

Along each new flavour of categories comes a refined notion of structure-preserving
functor.

Definition 3.8. Let (C,⊗, I) and (D,⊗′, I ′) be monoidal categories and let F : C→
D be a functor. Let µ be a natural isomorphism with components

µA,B : F (A⊗C B)→ F (A)⊗D F (B)

and let µ0 : F (IC)→ ID be an isomorphism in D. We say F is a monoidal functor
if the following diagrams commute for all A,B,C ∈ C.

F ((A⊗B)⊗ C) F (A⊗ (B ⊗ C))

F (A⊗B)⊗′ F (C) F (A)⊗′ F (B ⊗ C)

(F (A)⊗′ F (B))⊗′ F (C) F (A)⊗′ (F (B)⊗′ F (C))

F (αA,B,C)

α′F (A),F (B),F (C)

µA⊗B,C µA,B⊗C

µA,B⊗′idF (C) idF (A)⊗′µB,C

F (A⊗ I) F (A)⊗′ F (I) F (I ⊗ A) F (I)⊗′ F (A)

F (A) F (A)⊗′ I ′ F (A) I ′ ⊗′ F (A).

µA,I

idF (A)⊗′µ0

ρ′F (A)

F (ρA)

µI,A

µ0⊗′idF (A)

λ′F (A)

F (λA)

Example 3.9. Consider the monoidal categories (FinSet,×, {•}) and (FdHilb,⊗,C)
from the previous examples — where FinSet is the subcategory of Set whose ob-
jects are all finite sets. There is a monoidal functor F : FinSet → FdHilb that
maps each set A ∈ FinSet to the Hilbert space F (A) ∈ FdHilb spanned by taking
A as a basis. For each morphism f ∈ FinSet(A,B), the functor yields a linear
map F (f) ∈ FdHilb(F (A), F (B)) defined by linear extension of f . Notice that
F (A×B) ∼= F (A)⊗ F (B) since both have the same dimension |A×B| = |A| · |B|;
we define µA,B to be this isomorphism. Similarly, F ({•}) ∼= C provides µ0.

Example 3.10. Consider the monoidal categories (FinSet,⊕,∅) and (FdHilb,⊕, {0})
from the previous examples — where FinSet is the subcategory of Set whose ob-
jects are all finite sets. There is a monoidal functor F : FinSet → FdHilb that
maps each set A ∈ FinSet to the Hilbert space F (A) ∈ FdHilb spanned by taking
A as a basis. For each morphism f ∈ FinSet(A,B), the functor yields a linear
map F (f) ∈ FdHilb(F (A), F (B)) defined by linear extension of f . Notice that
F (A⊕B) ∼= F (A)⊕F (B) since both have the same dimension |A ]B| = |A|+ |B|;
we define µA,B to be this isomorphism. Similarly, F (∅) ∼= {0} provides µ0.

In these examples, each µ has not been given explicitly, but we know they exist.
In principle, this is not enough to conclude that these functors are monoidal: we
would still need to check that the diagrams from Definition 3.8 commute. Proving
this is not trivial, but it isn’t too difficult either — notice that (FinSet,×, {•})
is built around a categorical product × and (FdHilb,⊕, {0}) is built around a
coproduct ⊕.
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3.2 The coherence theorem

We will now take a detour to justify the use and rigor of graphical language in
monoidal categories. This section is quite informal; for a more in-depth treatment
of the topic see Sections 1.3.3 and 1.3.4 from [3].

Let (C,⊗, I) be a monoidal category and A,B,C ∈ C objects in it. The as-
sociator makes objects (A ⊗ B) ⊗ C and A ⊗ (B ⊗ C) isomorphic, but they are
not necessarily the same. Indeed, in (Set,×, {•}) the set (A× B)× C and the set
A × (B × C) are not quite the same since ((a, b), c) 6= (a, (b, c)). However, it can
be argued that the difference between these simply comes down to mathematical
fluff: ((a, b), c) is not quite the same element as (a, (b, c)) just due to how its data
is wrapped differently within parentheses. In a strict monoidal gategory (defined
below) these (A ⊗ B) ⊗ C and A ⊗ (B ⊗ C) are in fact the same object for all
A,B,C ∈ C.

Definition 3.11. A strict monoidal category is a monoidal category whose associ-
ators and unitors are all identities.

Example 3.12. Let MatC be the category whose objects are the natural numbers
and whose morphisms n→ m are m-by-n matrices of complex numbers. Composi-
tion corresponds to matrix multiplication, whereas monoidal product ⊗ on objects
corresponds to multiplication n⊗m = nm and on morphisms f ⊗ g corresponds to
Kronecker product. Then, (MatC,⊗, 1) is a strict monoidal category.

Notice that (n ⊗ m) ⊗ k is the same as n ⊗ (m ⊗ k) thanks to multiplication
of natural numbers being associative. Similarly, (f ⊗ g) ⊗ h is the same matrix as
f ⊗ (g⊗h) thanks to the Kronecker product being associative. Similar checks follow
for the unitors so that, indeed, (MatC,⊗, 1) is a strict monoidal category.

Even though the monoidal category (FdHilb,⊗,C) and the strict monoidal
category (MatC,⊗, 1) are not quite the same, they are definitely closely related.
FdHilb is not strict — once again, (u, (v, w)) and ((u, v), w) are not quite the same
vectors — nevertheless, there is a monoidal functor (FdHilb,⊗,C)→ (MatC,⊗, 1)
sending each linear map to its matrix representation and sending each Hilbert space
A ∈ FdHilb to the natural number dim(A). Such a functor is special in that it is
an instance of an equivalence between categories.

Definition 3.13. Let F : C→ D be a functor.

� We say that F is faithful if the action of F on morphisms C(A,B)→ D(F (A), F (B))
is injective for each A,B ∈ C.

� We say that F is full if the action of F on morphisms C(A,B)→ D(F (A), F (B))
is surjective for each A,B ∈ C.

� We say that F is essentially surjective if for every object B ∈ D there is an
object A ∈ C such that B ∼= F (A).

We say that F is an equivalence if it is full, faithful and essentially surjective. When
C and D are monoidal categories and F is an equivalence, we say that F is a
monoidal equivalence if F is a monoidal functor.

It is immediate to check that the functor FdHilb →MatC we were discussing
above is an equivalence. A bit more work is required to prove that it is a monoidal
equivalence, but this is indeed the case. When equipped with an equivalence F : C→
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D, we can prove that two morphisms f, g : A → B in C are the same by checking
whether their image F (f), F (g) are the same — in fact, we only require faithfulness
for this. Indeed, we are used to saying that two linear maps are the same if and
only if their matrix representation is the same.

Proposition 3.14. Let F : C → D be a faithful functor and let f, g : A → B be
morphisms in C. Then:

f = g ⇐⇒ F (f) = F (g)

Proof. The (⇒) direction follows trivially and the (⇐) direction follows from the
action of F on C(A,B)→ D(F (A), F (B)) being injective.

Moreover, when F : C→ D is an equivalence we can define a functor G : D→ C
that is also an equivalence and acts roughly11 as the inverse of F . Hence, an equiva-
lence F : C→ D not only satisfies Proposition 3.14 but also guarantees the existence
of another functor on the opposite direction G : D→ C satisfying Proposition 3.14.
Informally, we can think of an equivalence between categories as stating that “if an
equation holds in C it also holds in D and vice versa”.

With this knowledge at hand, let’s look at the strictification theorem.

Theorem 3.15. Every monoidal category is monoidally equivalent to a strict monoidal
category.

Informally, this means that given any monoidal category — no matter how com-
plicated its definition is — there is a strict monoidal category where the mathemat-
ical fluff has been omitted. Then, manipulation of expressions becomes easier while
guaranteeing that any calculation performed in the simpler category yields a correct
calculation in the original one.

However, the strictification theorem has two important caveats.

� Even though it does tell you how to construct the strict monoidal category
corresponding to your original monoidal category, the construction is so ab-
stract that it isn’t particularly useful for calculations. In particular, applying
the strictification theorem to FdHilb does not yield something as concise as
MatC but rather some abstract nonesense that captures the essence of MatC
if you squint at it for long enough. Thus, we should take the theorem as a
statement about the existence of an equivalent strict monoidal category rather
than a method for constructing it.

� Even if you ended up with a manageable strict category such as MatC, much
of the details from the original category have been lost. For instance, the
functor FdHilb→MatC maps all Hilbert spaces of dimension n to the same
object in MatC. If you are given a matrix without any context, it is just
a bag of numbers to you; at the very least you need to know which are the
basis vectors: are they the computational basis? the X basis? are the basis
vectors coordinates in space? are they wave functions? Working with the
strict category alone is just not enough: you make calculations in the strict
category MatC but assign meaning to them via the functor FdHilb→MatC.

What is the point of the strictification theorem then? Possibly its most important
purpose is that it acts as a stepping stone for the coherence theorem, stated below.

11It is only a proper inverse if the action of F on objects is a bijection; being essentially surjective
is not enough. However, let’s not go down that rabbit hole.
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Theorem 3.16. Let (C,⊗, I) be a monoidal category. Let f and g be two morphisms
in C built exclusively from α, α−1, λ, λ−1, ρ, ρ−1 and id by combining them using
◦ and ⊗. If f and g have the same type then f = g.

Sketch. Let D be the strict monoidal category given by the strictification theorem
and let F : C→ D be its monoidal equivalence. Recall that F (−◦−) = F (−)◦F (−)
and F (− ⊗ −) ∼= F (−) ⊗ F (−); apply these inductively to F (f) and F (g). Since
D is strict, F (α) = id and similarly with all other components of f and g. Since
id ◦ id = id and id ⊗ id = id it follows that F (f) = id = F (g). But F is a
faithful functor — it is an equivalence — so f = g (direct from faithfulness, see
Proposition 3.14).

With the coherence theorem we get the best of both worlds. On one hand, we
know we can safely ignore associators and unitors in our equations as long as every-
thing “type checks”, reducing unnecessary mathematical fluff. On the other hand,
we never leave our original category, so the meaning of our objects and morphisms
remains intact.

A natural question arises: if we can disregard associators and unitors, why do
we even bother defining them? This is a misconception that arises from looking at
the problem backwards. In practice, the usual workflow is the following:

1. Pick a category C and come up with a functor ⊗ : C × C → C. Then, you
ask yourself whether ⊗ can be used to give a monoidal structure to C.

2. To answer this, you must come up with associators and unitors and verify that
the triangle and pentagon equations from Definition 3.1 hold. In some sense,
these guarantee that ⊗ is a well-behaved ‘parallel composition’.

3. Once you know that (C,⊗, I) is monoidal you no longer need to worry about
associators and unitors, thanks to the coherence theorem. However, the step
of verifying the pentagon and triangle equations was essential — you had to
check that ⊗ was well-behaved enough for the coherence theorem to hold.

This is useful when working with categories whose monoidal product is complex.
In the case of (FdHilb,⊗,C), the monoidal product ⊗ is just the usual tensor
product of vector spaces. However, when working with the category Hilb of arbi-
trary Hilbert spaces (including infinite dimensional ones) and bounded linear maps,
the usual tensor product of Hilbert spaces is not a Hilbert space; we need to ‘add’
some more vectors for it to satisfy completeness. Then, proving that (Hilb,⊗,C)
is a monoidal category is not so trivial anymore. The good news is that, once we
prove it, we no longer need to worry about the monoidal structure: all works trans-
parently thanks to the coherence theorem. Similarly, one may think that there is
a well-behaved notion of tensor product of topological abelian groups in some ap-
propriate category TopAb. However, when you try to formalise it as a monoidal
product you find out that the pentagon equation fails, so it does not provide a
monoidal structure for TopAb, preventing you from using the coherence theorem.

Since we can always disregard associators and unitors as long as everything ‘type
checks’, we may remove all appearances of α, λ and ρ from our equations — as long
as we have a system to keep track of where the objects are in relation to each
other (i.e. keep track of the type). This is precisely what the graphical language of
monoidal categories does:
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This, along with the graphical language’s ‘native’ distinction between sequential
composition ◦ and parallel composition ⊗— which removes the need for parentheses
when combining these two (see (5) and the corresponding diagram) — makes the
graphical language of string diagrams a concise and intuitive language for equation
manipulation. And, thanks to the coherence theorem, it is fully rigorous and usable
in all monoidal categories, no matter how complicated they are.

Something essential to keep in mind is that — in a similar manner MatC alone
lacks meaning and must come along a functor FdHilb → MatC providing its se-
mantics — playing with diagrams lacks meaning unless we understand what each of
its boxes ‘mean’. As usual, we can capture the meaning of diagrams via a functor
F : Diagram → C. Here, Diagram is the category whose objects are type sig-
natures and whose morphisms are diagrams, whereas F maps each diagram to its
intended interpretation as a morphism in C. This is a common theme in computer
science: Diagram provides the syntax, F provides the semantics.

3.3 Symmetric monoidal categories

Let’s add more flavour to our monoidal categories.

Definition 3.17. Let (C,⊗, I) be a monoidal category and let σ be a natural
isomorphism with components

σA,B : A⊗B → B ⊗ A.

We say C is a braided monoidal category if σ satisfies the axioms given below. We
refer to σ as braiding and represent it graphically as the crossing of wires; the axioms
are represented graphically as:

==
C

B

A

B

A

C

σA,C

σB,C
C

B

A

B

A

C

σA⊗B,C

C

B

A

A

C

B

σA,C

σA,B

C

B

A

A

C

B

σA,B⊗C

We say C is a symmetric monoidal category if, additionally, σ−1
A,B = σB,A for all pairs

of objects.
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Definition 3.18. A braided monoidal functor is a monoidal functor F : C → D
between braided monoidal categories such that the diagram

F (A⊗B) F (B ⊗ A)

F (A)⊗′ F (B) F (B)⊗′ F (A)

µA,B µB,A

F (σA,B)

σF (A),F (B)

commutes, where σ is the braiding in C, σ′ is the braiding in D and µ is the natural
isomorphism that makes F a monoidal functor. A symmetric monoidal functor is a
braided monoidal functor between symmetric monoidal categories.

Both Set and Vect are symmetric monoidal categories with either of the monoidal
structures discussed in the previous examples. Both monoidal functors FinSet →
FdHilb discussed in previous examples are symmetric monoidal functors.

There are many other flavours of categories, each of them adding more structure
by introducing new operations and axioms. In the next section we will introduce two
more categories of relevance to the study of quantum processes: dagger categories
and compact closed categories. At its core, category theory is the classification of
different flavours of categories, the description of how different categories are related
to each other (via functors) and the study of how general properties (often universal
properties) arise from the abstract structure that is imposed.

3.4 Exercises

[!] 3.1. Let C be a category with products A × B for each A,B ∈ C and a
terminal object I. Prove that (C,×, I) is a symmetric monoidal category. Hint:
Use Exercise 2.1 to define the associator. Use uniqueness of the universal morphism
of limits to prove the pentagon equation. A similar approach will work for the
unitors and braiding as well.

[!] 3.2. Let (C,⊗, I) be a symmetric monoidal category; let f : A → B ⊕ G and
f ′ : A→ B ⊕G′ be two morphisms in C and define the following relation:

f ′ ≤L f ⇐⇒ ∃h ∈ C(G,G′), f ′ = (id⊗ h) ◦ f. (6)

Let ∼L be the equivalence closure12 of ≤L.

The objects G and G′ are not special in any way, they are just arbitrary objects of
C as A and B are. Let L[C] be the category whose objects are the same as C and
whose morphisms A → B are equivalence classes generated by ∼L on morphisms
A → B ⊗ − in C. We may represent a morphism f ∈ L[C](A,B) graphically by
taking advantage of the string diagram language of C, where we separate the objects

12The equivalence closure of a relation R is the smallest equivalence relation containing R.
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that are being quotiented over by ∼L with a dashed red line. These following two
morphisms are the same in L[C] and their type is A→ B:

.

Let f ∈ L[C](A,B) and g ∈ L[C](B,C); composition in L[C] is defined as follows:

.

For each object A ∈ L[C], its identity is defined as follows:

.

Let f ∈ L[C](A,C) and g ∈ L[C](B,D); monoidal product in L[C] is defined as
follows:

.

The monoidal unit in L[C] is I, the same as in C.

(a) Prove that L[C] is a category (see Definition 1.3).

(b) Prove that (L[C],⊗L, I) is a symmetric monoidal category (see Definition 3.1).
Hint: you must come up with a definition of associators and unitors in L[C]
using those in C.

(c) Prove that I is a terminal object in L[C] (see Definition 2.14).

(d) Prove that there is a symmetric monoidal functor H : C→ L[C] that acts as
the identity on objects and acts as follows on morphisms (see Definitions 1.9
and 3.8):

.
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(e) Let (D,⊗′, I ′) be a symmetric monoidal category whose monoidal unit I ′ is
terminal. Let F : C→ D be a symmetric monoidal functor. Prove that there
is a unique symmetric monoidal functor F̂ : L[C]→ D such that the following
diagram commutes. Hint: start by attempting to come up with a symmetric
monoidal functor F̂ that makes the diagram commute; then, check that every
choice you made when defining it was the unique valid choice; this will imply
uniqueness.

C L[C]

D

H

F
F̂

[Q] 3.3. Notice that the last task in the previous exercise characterises L[C] via a
universal property. In this exercise we look at what L[Isometry] is. Let Isometry
be the category whose objects are finite dimensional Hilbert spaces and whose mor-
phisms are isometries. Let CPTP be the category whose objects are finite dimen-
sional Hilbert spaces and whose morphisms A → B are completely positive trace-
preserving maps L(A) → L(B), where L(A) is the Hilbert space of linear maps of
type A→ A. Let E : Isometry → CPTP be the functor that acts as the identity
on objects and maps isometries V ∈ Isometry(A,B) to CPTP maps V (−)V †.

(a) Let (D,⊗′, I ′) be a symmetric monoidal category whose monoidal unit I ′ is
terminal. Let F : Isometry→ D be a symmetric monoidal functor. Prove —
using the Stinespring’s dilation theorem — that there is a unique symmetric
monoidal functor F̂ : L[Isometry]→ CPTP such that the following diagram
commutes. Hint: start by attempting to come up with a symmetric monoidal
functor F̂ that makes the diagram commute; then, check that every choice you
made when defining it was forced — i.e. there was only one choice — this will
imply uniqueness.

Isometry L[Isometry]

CPTP

E

F
F̂

(b) Prove — using an argument similar to Proposition 2.7 — that there is a full
and faithful functor L[Isometry] → CPTP. Conclude that L[Isometry]
and CPTP are equivalent (see Definition 3.13).

Discussion: we can conclude that CPTP maps and ‘isometries with hiding’ are
equally valid formalism to describe open quantum processes. This exercise has been
extracted from papers [4] and [2].
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4 Dagger compact closed categories

In this section we are going to formalise in category-theoretic terms two impor-
tant properties of Hilbert spaces and their linear maps. The first one is captured
by compact closed categories and we use it to show that the set of linear maps
FdHilb(A,B) can be given the structure of a Hilbert space. The second one is
captured by dagger categories and relates to the importance of adjoints of linear
maps.

The notation and definitions in this section are taken for the most part from [7].
To learn more about dagger compact closed categories and their role in quantum
computing, see [3].

4.1 Compact closed categories

Definition 4.1. Let (C,⊗, I) be a symmetric monoidal category. For eachA ∈ C let
there be another object A∗ ∈ C and morphisms ηA : I → A⊗A∗ and εA : A∗⊗A→ I
depicted in the graphical calculus as follows:

We say such a category C is a compact closed category if the following equations are
satisfied for all A ∈ C:

(7)

Example 4.2. We already know from previous examples that (Rel,⊗, {•}) is a
symmetric monoidal category. For each set A ∈ Rel let A∗ = A and define

ηA = {(•, (a, a)) | a ∈ A}
εA = {((a, a), •) | a ∈ A}.

It is straightforward to check that Rel is a compact closed category under these
definitions.

Example 4.3. We already know from previous examples that (FdHilb,⊗,C) is
a symmetric monoidal category. For each finite dimensional Hilbert space A ∈
FdHilb let A∗ be the Hilbert space of functionals A→ C; i.e. in bra-ket notation:

A∗ = {〈a| | a ∈ A}.

It is a standard exercise in linear algebra to prove that A∗ is indeed in FdHilb.13

For each A ∈ FdHilb let BA be an orthonormal basis and let ηA : I → A⊗ A∗ and

13Addition, scalar multiplication and inner product can be defined directly from those of A via
〈x|+ 〈y| = 〈x+ y|, etc. Completeness follows from the fact that A∗ is a finite dimensional vector
space.
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εA : A∗ ⊗ A→ I be the unique linear maps satisfying:

ηA(1) =
∑
a∈BA

|a〉 ⊗ 〈a|

εA(〈a′| ⊗ |a〉) = 〈a′ |a〉

for all a, a′ ∈ A. It is not hard to check — via explicit calculation — that η and
ε satisfy the equations required for FdHilb to be a compact closed category under
these definitions.

It may seem like the definition of ηA in the example of FdHilb is dependent
on the choice of orthonormal basis BA; however, this is not the case. Proving so
using linear algebra isn’t hard, but this is an example where the graphical calculus
of monoidal categories simplifies the proof greatly.

Proposition 4.4. Let (C,⊗, I) be a symmetric monoidal category and let ηA : I →
A⊗ A∗, η′A : I → A⊗ A∗ and εA : A∗ ⊗ A→ I be morphisms in it. Assume that ηA
and εA satisfy (7); assume that η′A and εA satisfy (7) as well. Then, ηA = η′A.

Proof. We prove this with string diagrams:

where (7) and the coherence theorem of monoidal categories have been used.

Since εA in Example 4.3 is independent from the choice of basis, it follows from
the previous proposition that no matter which orthonormal basis is chosen when
defining ηA, the result is the same morphism. However, this does not mean that
given a symmetric monoidal category there is only one possible compact closed
structure on it. The example below provides a different compact closed structure
on FdHilb.

Example 4.5. For each finite dimensional Hilbert space A ∈ FdHilb let A∗ = A
and let BA be an orthonormal basis. Let ηA : I → A ⊗ A∗ and εA : A∗ ⊗ A → I be
the following linear maps:

ηA(z) = z
∑
a∈BA

|a〉 ⊗ |a〉

εA =
∑
a∈BA

〈a| ⊗ 〈a|

for all a, a′ ∈ A. It is not hard to check that η and ε satisfy the equations required
for FdHilb to be a compact closed category under these definitions.

Notice that ηA(1) in the previous example corresponds (up to normalisation) to
a maximally entangled state. Similarly, εA corresponds (up to normalisation) to
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a functional post-selecting output ηA(1). Then, (7) describe the basic intuition of
quantum teleportation:

Of course, this is not the full picture of the quantum teleportation protocol since
the post-selection operation is non-deterministic. The ZX-calculus [1] can help with
that, but this is not within the scope of this course.

The following proposition introduces one of the fundamental properties of com-
pact closed categories.

Proposition 4.6. Let (C,⊗, I) be a compact closed category and define B( C =
C ⊗B∗ and evB,C = ρC ◦ (idC ⊗ εB) ◦αC,B∗,B for each B,C ∈ C. For each morphism

f : A ⊗ B → C in C there is a unique morphism f̂ : A → (B ( C) such that the
following diagram

(B( C)⊗B C

A⊗B
f

evB,C

f̂⊗idB

commutes in C.

Proof. First, let’s show that such a morphism f̂ exists by defining

and checking that, indeed, the diagram in the claim commutes:

by direct application of (7). To prove uniqueness, let h : A → (B ( C) be an
arbitrary morphism making the diagram commute. Then,

implying that f̂ is unique.
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The proposition characterises B ( C via a universal property. In particular, it
establishes a bijection

C(A⊗B,C) ∼= C(A,B( C). (8)

So that each morphism f̂ : A → (B ( C) can be interpreted as mapping a 7→
f(a,−). This property is what ‘closed’ in ‘compact closed category’ refers to. There
are many examples of categories that are closed but not compact closed; for instance,
(Set,×, {•}) is ‘Cartesian closed’ and such a structure is what makes ‘currying’ pos-
sible in programming languages. One of the multiple consequences of the previous
proposition is that ‘currying’ is also available in quantum computing. In particular,
for product states |ψA〉 ⊗ |ψB〉 it implies that we may provide the input on B at a
later point in time (if we interpret time going from left to right in diagrams):

which, under the interpretation of Example 4.5, tells us that we require preparation
of a maximally entangled state for η and post-selection for ε. Once again, since
post-selection is non-deterministic, what we get is some kind of non-deterministic
currying.14

Another consequence of FdHilb being compact closed is that the set of linear
maps FdHilb(A,B) can be given the structure of a Hilbert space. Intuitively,
A( B carries the same information as FdHilb(A,B) but, since A( B ∈ FdHilb,
it follows that FdHilb(A,B) can be made into a Hilbert space. The formal proof
is given below.

Proposition 4.7. For each A,B ∈ FdHilb, there is a Hilbert space of linear maps
A→ B.

Proof. Let’s start from (8), relabelling some objects:

FdHilb(C⊗ A,B) ∼= FdHilb(C, A( B).

Recall that A ∼= C⊗A due to the left unitor being an isomorphism by the definition
of monoidal categories. This implies that

FdHilb(A,B) ∼= FdHilb(C⊗ A,B)

since the function mapping each f : A → B to f ◦ λA is a bijection.15 Moreover,
notice that for all X ∈ FdHilb there is a bijection FdHilb(C, X) ∼= X since each
linear map f ∈ FdHilb(C, X) is uniquely characterised by the vector f(1) ∈ X;
consequently:

FdHilb(C, A( B) ∼= A( B.

14Notice that if f is Clifford we can make it deterministic by applying some classically-controlled
Pauli gates at the end.

15It is injective since f ◦λA = g ◦λA implies f = f ◦λA ◦λ−1A = g ◦λA ◦λ−1A = g. It is surjective
since any h : I ⊗A→ B has h ◦ λ−1A as its preimage.
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Since A ( B = B∗ ⊗ A by definition, we conclude that there is a bijection of
sets FdHilb(A,B) ∼= B ⊗ A∗. Moreover, since B ⊗ A∗ is a Hilbert space — by
virtue of being an object of FdHilb — its addition, scalar multiplication and inner
product can be pushed through the bijection FdHilb(A,B) ∼= B ⊗ A∗ to turn the
set FdHilb(A,B) into a Hilbert space.

Now that we have verified that FdHilb(A,B) is a Hilbert space, we may consider
superoperators, i.e. transformations from linear maps to linear maps. Linear super-
operators will correspond to morphisms in FdHilb of type (A( B)→ (C ( D).
This puts us in the right direction towards the study of density matrices (which are
elements in A( A) and completely positive maps. However, we are lacking a key
ingredient: a categorical formalisation of positivity. This will be achieved in the
following subsection.

As a final note: the category (Hilb,⊗,C) is not compact closed. The intuitive
reason being that linear maps ηA and εA from Examples 4.3 and 4.5 cannot be
bounded if A is infinite dimensional and, hence, they are not morphisms in Hilb —
the morphisms in Hilb are bounded linear maps.

4.2 Dagger categories

Definition 4.8. Let C be a category equipped with an operation † : C(A,B) →
C(B,A) for each A,B ∈ C satisfying the following:

� (g ◦ f)† = f † ◦ g†,

� id†A = idA,

� (f †)† = f

for every f ∈ C(A,B), g ∈ C(B,C) and A,B,C ∈ C.

Example 4.9. Rel is a dagger category where for each morphism R : A → B the
dagger yields a relation R† characterised as follows:

bR†a ⇐⇒ aRb

for all a ∈ A and b ∈ B.

Example 4.10. Both FdHilb and Hilb are dagger categories where the dagger of
a morphism f : A→ B yields its adjoint linear map f † : B → A.

As usual, a category may have multiple candidates of † that make it a dagger
category. For instance, another way to make FdHilb a dagger category is to define
† as transposition of the linear map’s matrix. However, defining † as the adjoint
is particularly useful. For instance, let A ∈ FdHilb and v, u ∈ A; the usual inner
product of v and u is:

〈v |u〉 = v† ◦ u

where v and u are seen as morphisms in FdHilb(C, A). Moreover, we can identify
positive linear maps via the following property.

Proposition 4.11. A linear map f ∈ FdHilb(A,A) is positive if and only if there
is some B ∈ FdHilb and some g ∈ FdHilb(A,B) such that

f = g† ◦ g.
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Proof. The usual definition of positive linear map establishes that f : A → A is
positive if and only if for all a ∈ A:

〈a|f(a)〉 ≥ 0.

It is trivial to prove that this is satisfied if f = g† ◦ g since:

〈a|f(a)〉 = 〈a|g† ◦ g(a)〉 = 〈g(a)|g(a)〉 ≥ 0

where the properties of the adjoint g† and the inner product’s positive semi-definiteness
have been used. To prove the other direction, assume 〈a|f(a)〉 ≥ 0 for all a ∈ A
and recall that this implies that f is self-adjoint.16 Then, the spectral theorem es-
tablishes that f can be diagonalised as f = u†du where u is unitary and d is given
by a diagonal matrix of real entries. Let g =

√
d ◦ u, then f = g† ◦ g.

Finally, let’s put the dagger structure and the compact closed structure together.

Definition 4.12. A category (C,⊗, I) is dagger compact closed if it is both a dagger
category and a compact closed category and satisfies that ηA = σA∗,A◦ε†A; graphically:

.

Example 4.13. Rel is a dagger compact closed category, with its compact closed
structure given in Example 4.2 and its dagger structure given in Example 4.9.

Example 4.14. FdHilb is a dagger compact closed category, with its compact
closed structure given in Example 4.5 and its dagger structure given in Example 4.10.
Notice that the other dagger and compact closed structures on FdHilb discussed
in this section fail to make it a dagger compact closed category.

The exercises of this final section are based on [7] and prove that every completely
postive superoperator (A ( A) → (B ( B) in FdHilb is uniquely characterised
by a positive linear map. This is a fundamental part of the Choi-Jamio lkowski
isomorphism between CPTP maps and density matrices; what remains is to study
trace preservation and — although this can be neatly captured in the framework of
compact closed categories; see [3] — it is beyond the scope of this course.

4.3 Exercises

A density matrix on a Hilbert space A is a linear map A → A that is positive
and whose trace equals one. General quantum processes are linear maps that send
density matrices to density matrices and, hence, are morphisms in FdHilb of type
(A ( A) → (B ( B). In these exercises we will focus on the subproblem of
studying superoperators that send positive linear maps to positive linear maps.

16The statement 〈a |f(a)〉 ≥ 0 tells us that 〈a |f(a)〉 is a real positive number. Then,

〈a |f(a)〉 = 〈a |f(a)〉 = 〈f(a) |a〉 = 〈a |f†(a)〉

so it follows that 〈a |f(a)〉 − 〈a |f†(a)〉 = 0. By linearity, 〈a |f(a)− f†(a)〉 = 0 for all a ∈ A so it
must be that f(a)− f†(a) = 0 and, hence, f = f†.
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Definition 4.1. A completely positive superoperator is a morphism f : (A( A)→
(B ( B) in FdHilb such that for all C ∈ FdHilb and all linear maps ρ ∈
(C ⊗ A)( (C ⊗ A) satisfies:

ρ is positive =⇒ (id⊗ f)(ρ) is positive.

If boxes in FdHilb depict linear maps A → A it is reasonable to depict a
superoperator (A ( A) → (B ( B) as a box with a hole where the input linear
map A→ A should go; in the literature, these are known as combs.

Composition of superoperators and tensor product can also be depicted using some
imagination:

.

Moreover, we know from previous discussion in this section that a superoperator
(A ( A) → (B ( B) is just a linear map from A ⊗ A∗ to B ⊗ B∗. However, in
order to depict it in the form of a comb we need to make use of the isomorphism
FdHilb(X, Y ) ∼= Y ⊗ X∗ to get the types right. Doing so leads to the following
internal wiring of a comb:

.

[!] 4.2. (a) Draw the internal wiring of the comb that corresponds to the linear
map id: A⊗ A∗ → A⊗ A∗. Simplify it using (7).

(b) Draw the internal wiring of the comb of idC(C ⊗ f where f is a superoperator
of type (A ( A) → (B ( B). Hint: you should get something that looks
like the comb of the next exercise.

We are now in a position to tackle the following exercise, which is a key compo-
nent of the Choi-Jamio lkowski isomorphism theorem.

[!] 4.3. Let f : A⊗ A∗ → B ⊗B∗ be a morphism in FdHilb.
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(a) Prove that for all C ∈ FdHilb and all positive linear maps ρ : C⊗A→ C⊗A:

.

Hint: Using Proposition 4.11, identify a positive linear map of type C ⊗A→
C ⊗ A within the right hand side of the implication. Once you do, the right
hand side follows immediately from the left hand side.

(b) Prove that for all C ∈ FdHilb and all positive linear maps ρ : C⊗A→ C⊗A:

.

Hint: Simplify the left hand side using (7); then, apply Proposition 4.11 on
the result and substitute in the right hand side. After some further diagram
manipulation you should be able to use Proposition 4.11 to prove that the
right hand side is positive.

(c) Conclude that every completely postive superoperator (A( A)→ (B ( B)
is uniquely characterised by a positive linear map A∗ ⊗B → A∗ ⊗B.
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